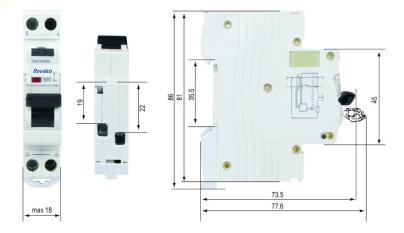
# Interruptores diferenciales combinados RV315

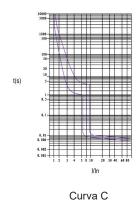




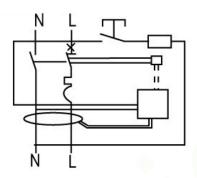

### Construcción y características

- El mecanismo de operación adopta el contacto doble con la forma DPN, primero se abre el polo N y luego se rompe.
- La protección conta fugas adopta un circuito integrado de tipo electrónico, pantalla de estado
  ON / OFF de contacto.
- El disparador tiene una función de posición intermedia y una cubierta para colocar etiquetas y franjas características en otros lados.
- Proporciona protección contra fallo a tierra / corriente de fuga, cortocircuito, sobrecarga y función de aislamiento.

#### Datos técnicos


- Modelo: RV315
- Poder de corte: 6KA IEC60947-2 y IEC61009
- Modo: tipo electromagnético
- Nº Polos: 1P+N
- Corriente nominal (A): 30
- Voltaje nominal: 240/415V AC
- Frecuencia nominal: 50 / 60 Hz
- · Curva de disparo: C
- Resistencia electromecánica: 4000 ciclos
- · Tensión nominal soportada de impulso: 4,5KA
- · Clases y empleo
  - AC = Fugas en AC. Industrial y terciario
  - A = Fugas en AC y DC pulsante. SUPERINMUNIZADO. Industrial
- Clase de protección: IP20
- Indicación de posición de contacto
- Dimensiones: 1 módulo por polo (18 mm)
- Permite empleo de peines de conexión tipo pin
- Capacidad de conexión:
  - Conductor rígido 35mm2.
  - Par de apriete: 1.2Nm
- Instalación:
  - En carril simétrico DIN 35mm.
  - Montaje en panel
  - Altura de conexión del terminal: 18/22 mm

## Dimensiones generales y de instalación




# Interruptores diferenciales combinados RV315

### Curva característica



# Diagrama de cableado



# Características de protección de sobrecarga de corriente

| Procedimiento de prueba | Tipo    | Corriente de prueba | Estado inicial       | Tiempo límite de disparo<br>o no disparo | Resultado<br>esperado | Observación                                          |
|-------------------------|---------|---------------------|----------------------|------------------------------------------|-----------------------|------------------------------------------------------|
| а                       | B, C, D | 1.13 ln             | frío                 | t ≥ 1 h                                  | sin disparo           |                                                      |
| b                       | B, C, D | 1.45 ln             | después de la prueba | t < 1 h                                  | con disparo           | coriiente en los 5 s en el aumento de la estabilidad |
| С                       | B, C, D | 2.55 ln             | frío                 | 1s < t < 60 s                            | con disparo           |                                                      |
| d                       | В       | 3 In                |                      | t ≥ 0.1 s                                | sin disparo           | encienda el interruptor                              |
|                         | С       | 5 In                | frío                 |                                          |                       | auxiliar para cerrar la<br>corriente                 |
|                         | D       | 10ln                |                      |                                          |                       |                                                      |
| е                       | В       | 5 In                | frío                 |                                          | con<br>disparo        | encienda el interruptor                              |
|                         | С       | 10 ln               |                      | t > 1h                                   |                       | auxiliar para cerrar la                              |
|                         | D       | 20 In               |                      |                                          |                       | corriente                                            |

La terminología "estado frío" se refiere a que no se transporta ninguna carga antes de realizar la prueba a la temperatura de ajuste de referencia

## Tiempo de descanso de la acción actual residual

| Tipo    | In/A            | IΔn/A La corriente residual (IΔ) corresponde a los siguientes tiempos de ruptura |        |        |       |                    |                              |  |
|---------|-----------------|----------------------------------------------------------------------------------|--------|--------|-------|--------------------|------------------------------|--|
| Tipo AC | cualuier valor  | cualquier valor                                                                  | In     | 2 In   | 5 In  |                    |                              |  |
| Tipo A  | cualquier valor | > 0.01                                                                           | 1.4 ln | 2.8 In | 7 In  | 5A, 10A, 20A, 50A, |                              |  |
| Tipo A  | cualquier valor | ≤ 0.01                                                                           | 2 In   | 4 In   | 10 In | 100A, 200A, 500A   |                              |  |
|         |                 |                                                                                  | 0.3    | 0.15   | 0.04  | 0.04               | tiempo de<br>descanso máximo |  |

El tipo general RCBO cuya corriente es de 0.03mA o menos puede usar 0.25A en lugar de 5I  $\Delta n$ 

© CB ({ RoHS