

Solicita información

🕿 91 366 00 63

Sistema de medición de tensión de paso y de contacto MI 3295 Manual de funcionamiento Versión 1.4, Código nº 20 751 739

Distribuidor:

Fabricante:

METREL d.d. Ljubljanska cesta 77 1354 Horjul Eslovenia página web: <u>http://www.metrel.si</u> correo electrónico: metrel@metrel.si

La presencia de esta marca en su equipo certifica que cumple con las normativas de la UE (Unión Europea) relativas a las normativas de seguridad y compatibilidad electromagnética

© 2013 METREL

Los nombre comerciales Metrel, Smartec, Eurotest y Autosequence son marcas registradas o pendientes de registro en Europa y otros países.

Ninguna parte de esta publicación podrá ser reproducida o utilizada de ningún modo ni por ningún medio sin el permiso escrito por parte de METREL.

1	Prólogo	5
2	Consideraciones de seguridad y funcionamiento	6
	 2.1 Advertencias y notas	6 7 8 9
3	Descripción del Medidor MI 3295M	.10
	 3.1 Panel frontal 3.2 Panel de conectores 3.3 Panel posterior 	10 11 11
4	Descripción de la Estación MI 3295S	.13
	 4.1 Panel frontal	13 14 14 14
5	Funcionamiento del Medidor MI 3295M	.15
	 5.1 Organización de la pantalla	15 15 16 16 16 17 17 17 18 19
6	Funcionamiento de la Estación MI 3295S	.21
	 6.1 Organización de las pantallas 6.2 Advertencias y mensajes	21 22 22 23 23 23 23 24 24 24 24 25
7	Mediciones	.26
	 7.1 Teoría de las mediciones 7.1.1 Generalidades acerca de la conexión a tierra 7.1.2 Generalidades acerca de la resistencia de tierra específica	26 26 27 27 30 30

	7.2. 7.2. 7.2. 7.3 7.3 7.3.	 2 Sincronización antes de la prueba (recomendada) 3 Mediciones de tensión de paso / tensión de contacto 4 Sincronización una vez finalizada la prueba (recomendada) 4 Resistencia de tierra 1 Medición de resistencia de tierra 2 Medición de la resistencia de tierra específica 	31 32 33 33 33 34
8	Mai	nejo de los datos	36
	8.1 8.1. 8.1. 8.1. Borr Borr Borr 8.2 8.2 8.3	Memoria 1 Estructura de datos 2 Almacenamiento de los resultados de las pruebas 3 Recuperación de los resultados de las pruebas 4 Borrado de los datos almacenados 7 ado de todo el contenido de la memoria 7 ado de las mediciones en la posición seleccionada 7 ado de mediciones individuales 7 Registrador de corriente 1 Borrado del contenido del registrador Comunicación	
9	Mai	ntenimiento	43
	9.1 9.2 9.3 9.4	Sustitución del fusible Limpieza Calibración periódica Servicio	43 43 43 43
10) Esp	pecificaciones técnicas	44
	10.1 10.2 10.3 10.4 10.5	Tensión de paso, tensión de contacto Corriente Resistencia a tierra Resistencia de tierra específica Datos generales	44 44 45 45 45

1 Prólogo

Enhorabuena por la adquisición de este sistema de medición de METREL. El sistema de medición de tensión de paso y de contacto está compuesto por una Estación (MI 3295S) y un Medidor (MI 3295M), y ha sido diseñado para realizar las siguientes pruebas y mediciones:

- Tensión de paso
- Tensión de contacto
- Resistencia de tierra
- Resistencia de tierra específica

El instrumento está equipado con todos los accesorios necesarios para realizar las pruebas forma cómoda. El programa de software HV link PRO permite la descarga y el almacenamiento de los resultados, así como la creación de informes de las pruebas.

Algunos aspectos destacados del sistema de medición:

- Pantallas gráficas LCD en el Medidor y la Estación.
- Medidores autónomos de tensión de paso / de contacto.
- Más de 1000 posiciones de memoria en la memoria flash de datos para el almacenamiento de los resultados y los parámetros de las pruebas.
- Puertos USB y RS232 en el Medidor para establecer comunicación con un ordenador.
- Sincronización entre el Medidor y la Estación.
- Gran corriente de prueba de hasta 50 A.
- Resultados estables y precisos gracias al sistema de medición DSP.
- Totalmente compatible con el nuevo paquete de software HVLink PRO de METREL.

2 Consideraciones de seguridad y funcionamiento

2.1 Advertencias y notas

Para que el operario tenga el máximo nivel de protección durante la realización de las distintas pruebas y mediciones utilizando el Sistema de medición de tensión de paso y de contacto, así como para mantener el equipo a salvo de daños, es necesario tener en cuenta las siguientes advertencias generales:

- La advertencia 🕰 en el instrumento significa »Lea el manual de funcionamiento con especial atención para un funcionamiento seguro«. ¡Este símbolo implica que se debe realizar una actuación!
- Si el equipo de comprobación se utiliza de forma distinta a la especificada en este manual de funcionamiento, es posible que la protección proporcionada por el equipo se vea afectada.
- Lea atentamente el presente manual de funcionamiento, de lo contrario el uso del instrumento puede resultar peligroso para el operario o para el propio instrumento
- Tenga en cuenta todas las precauciones de seguridad normales para evitar riesgos de descarga eléctrica al trabajar en zonas cercanas a los sistemas de distribución.
- No utilice el instrumento ni los accesorios si detecta algún daño.
- Las intervenciones del servicio técnico o los procedimientos de ajuste y calibración sólo deben ser realizados por personal competente autorizado.
- Utilice únicamente los accesorios de prueba estándar u opcionales suministrados por su distribuidor.

Medidor (MI 3295M)

- El instrumento contiene pilas recargables de NiMh, que sólo deben ser reemplazadas por otras del mismo tipo según se indica en la etiqueta de colocación de las pilas o en este manual. No utilice pilas alcalinas normales con el adaptador de corriente conectado, de lo contrario podrían explotar.
- Desconecte todos los cables de prueba, extraiga el cable de alimentación y apague el instrumento antes de quitar la tapa del compartimento de las pilas.
- El peso de cada pica de prueba es de 25 kg. Este peso puede ser perjudicial si las picas no se levantan y transportan del modo adecuado.

Estación (MI 3295S)

- Durante el funcionamiento del instrumento, los orificios de ventilación de la carcasa siempre se deben mantener abiertos para garantizar el paso de un flujo de corriente suficiente para la refrigeración.
- Desconecte todos los cables de prueba, extraiga el cable de alimentación y apague el instrumento antes de cambiar el fusible.
- El peso de la estación MI 3295S es de 28 kg. Este peso puede ser perjudicial si el instrumento no se levanta y transporta del modo adecuado. Se recomienda que el instrumento sea transportado por dos personas.

2.2 Pilas y carga del instrumento MI 3295M

El instrumento MI 3295M emplea seis pilas alcalinas o recargables de NiCd o NiMH de tamaño AA. El tiempo de funcionamiento nominal indicado corresponde a las pilas con una capacidad nominal de 2100 mAh. El estado de las pilas siempre se muestra en la parte inferior derecha de la pantalla.

En caso de que la batería esté demasiado baja, el instrumento lo indicará del modo que se muestra en la figura 2.1. Este indicador aparece durante algunos segundos, tras lo cual el instrumento se apaga.

Figura 2.1: Indicador de batería descargada

Las pilas se cargan cuando el adaptador de corriente está conectado al instrumento. La carga es controlada por un circuito interno, que garantiza la máxima duración de las pilas. La figura 2.2 muestra la polaridad de la toma de alimentación.

Figura 2.2: Polaridad de la toma de alimentación

El instrumento reconoce automáticamente el adaptador de corriente conectado e inicia la carga.

Símbolos:

Indicador de carga de las pilas

Figura 2.3: Indicador de carga

- Antes de abrir el compartimento de las pilas, desconecte todos los accesorios de medición conectados al instrumento y apáguelo.
- No cargue las pilas alcalinas.
- Coloque las pilas correctamente, de lo contrario el instrumento no funcionará y es posible que las pilas resulten dañadas.
- Extraiga todas las pilas del compartimento si no va a utilizar el instrumento durante un largo periodo de tiempo.
- Tenga en cuenta los requisitos de manipulación, mantenimiento y reciclaje indicados por las normativas pertinentes y los fabricantes de pilas alcalinas o recargables.
- Utilice únicamente el adaptador de corriente suministrado por el fabricante o distribuidor del equipo de comprobación, con el fin de evitar posibles incendios o descargas eléctricas.

2.2.1 Pilas nuevas o sin uso durante un largo periodo de tiempo

Durante la carga de pilas nuevas o sin uso durante un largo periodo de tiempo (más de tres meses) pueden tener lugar procesos químicos impredecibles. Las pilas de NiMH y NiCd ven reducida su capacidad (lo que en ocasiones se denomina efecto memoria). Debido a ello, el tiempo de funcionamiento del instrumento puede disminuir significativamente.

Procedimientos		Notas
>	Cargue por completo las pilas.	Al menos 14 horas con el cargador incorporado.
~	Descargue por completo las pilas.	Utilice el instrumento para realizar comprobaciones del modo normal hasta que en la pantalla de la unidad aparezca el símbolo "Bat".
>	Repita el ciclo de carga / descarga como mínimo otras dos veces.	Se recomienda repetir cuatro ciclos.

Procedimiento recomendado para la recuperación de las pilas:

El ciclo completo de carga / descarga se efectúa automáticamente para cada pila utilizando el cargador externo inteligente.

Notas:

- El cargador del instrumento es un cargador de cartuchos de pilas. Esto significa que las pilas están conectadas en serie durante la carga. Las pilas deben ser equivalentes (mismo estado de carga, tipo y antigüedad).
- Una sola pila diferente puede hacer que la carga sea inadecuada y que la descarga de todo el cartucho de pilas durante el uso normal del instrumento sea incorrecta (produciendo un calentamiento del cartucho de pilas, un tiempo de funcionamiento significativamente menor, la inversión de la polaridad de la pila defectuosa, etc.).
- Si tras varios ciclos de carga / descarga no se percibe ninguna mejora, es necesario comprobar cada una de las pilas (comparando sus tensiones, verificándolas en un cargador, etc.). Es muy probable que sólo algunas de las pilas estén deterioradas.
- No se deben confundir los efectos anteriormente descritos con la reducción normal de la capacidad de las pilas con el transcurso del tiempo. Asimismo, las pilas pierden parte de su capacidad al ser cargadas / descargadas repetidamente. La reducción real de la capacidad con respecto al número de ciclos de carga depende del tipo de pila, y aparece indicada en las especificaciones técnicas del fabricante de las pilas.

2.3 Normativas empleadas

El Sistema de medición de tensión de contacto de paso (MI 3295) ha sido fabricado y verificado conforme a las siguientes normativas, detalladas a continuación.

Compatibilidad electromagnética (CEM)

IEC/ EN 61326-1	Material eléctrico para medida, control y uso en laboratorio – requisitos de compatibilidad electromagnética (CEM) - Parte 1: Requisitos generales Clase B (Equipos de mano utilizados en entornos electromagnéticos controlados)
IEC/EN 61326-2-2	Material eléctrico para medida, control y uso en laboratorio – requisitos de compatibilidad electromagnética (CEM) - Parte 2-2: Requisitos particulares - Requisitos particulares. Configuraciones de ensayo, condiciones de funcionamiento y criterios de aptitud para la función para material de monitorización, medida y ensayo portátil usado en sistemas de distribución de baja tensión

Seguridad (LVD)

IEC/ EN 61010 - 1	Material eléctrico para medida, control y uso en laboratorio – requisitos de compatibilidad electromagnética (CEM) - Parte 1: Requisitos generales
IEC/ EN 61010 - 031	Requisitos de seguridad para sondas manuales para medidas y ensayos eléctricos

Funcionamiento

HD 673 S1 Instalaciones eléctricas de más de 1 kV a.c.	
ANSI/IEEE Std 81	Guía de IEEE para la medición de Resistencias de Tierra,
	Impedancias de Tierra y Potenciales de Superficie de Tierra en
	Sistemas de Aterramiento
RAT 2008	Normativa española de alta tensión

3 Descripción del Medidor MI 3295M

3.1 Panel frontal

Figura 3.1: Panel frontal

1	ESC	Regresa al menú anterior	
2	MEM	Manejo de la memoria	
3	Cursores y tecla TEST	Cursores	Seleccionan los parámetros de prueba
		TEST Inicia / detiene la medición	
1	RETROILUMINACIÓN,	Cambia el nivel de retroiluminación y el	
4	CONTRASTE	contraste	
5	Pantalla LCD	Pantalla LCD con retroiluminación	
		Enciende o a	paga el instrumento
<u> </u>	Encendido / Apagado	El instrument	o se apaga automáticamente 15
6		minutos desp	oués de la pulsación de la última
		tecla.	
7,8	Selector de funciones	Selecciona la función de prueba y los ajustes	

3.2 Panel de conectores

Figura 3.2: Panel de conectores

Leyenda:

1	Conector de prueba.
	¡Atención! La tensión máxima permitida entre los terminales de prueba y tierra es
	de 50 V. La tensión máxima permitida entre los terminales de prueba es de 100 V.
2	Enchufe de alimentación
3	Conector PS/2 (para la comunicación mediante RS232)
4	Cubierta protectora
5	Conector USB

3.3 Panel posterior

Figura 3.3: Panel posterior

1	Cubierta del compartimento de las pilas
2	Etiqueta informativa
3	Tornillos de sujeción de la cubierta del compartimento de las pilas

Figura 3.4: Compartimento de las pilas

1	Etiqueta de número de serie
2	Pilas (tamaño AA).
3	Compartimento de las pilas

4 Descripción de la Estación MI 3295S

4.1 Panel frontal

Figura 4.1: Panel frontal

1	Fusible de la red eléctrica	Consulte el apartado 9.1 Sustitución de fusibles para más información		
2	Entrada de la red eléctrica	Para la conexión del cable de alimentación		
3	Interruptor de encendido/apagado			
4	Conector RS 232	Para la conexión al Medidor		
5	C1/H	Conexión para la pica de tierra auxiliar		
6	S	Conexión para la pica de detección de tensión		
7	ES	Conexión para la segunda pica de detección de tensión		
8	C2/E	Conexión para la pica de tierra auxiliar		
9	HELP	Menús de ayuda		
10,11	Selector de funciones	Selecciona la función de prueba y los ajustes		
12	LCD	Pantalla LCD con retroiluminación		
13	CONTRASTE	Cambia el contraste		
14	MEM	Manejo de la memoria		
15	ESC	Regresa a la pantalla anterior		
16	Cursores y tecla TEST	Cursores: Selecciona los parámetros de prueba		
	, <u> </u>	TEST: Inicia la medición		

4.2 Instrumento y accesorios

4.2.1 Equipo estándar

Instrumento MI 3295S	1 ud.
Instrumento MI 3295M	1 ud.
Cable de red	1 ud.
Pesa para medicion (25 kg)	2 uds.
Pica de tierra de corriente	1 ud.
Pica de tierra de potencial	1 ud.
Cable de prueba de corriente, 50 m, negro, 10 mm ² ,	1 ud.
con cocodrilo, en rueda	
Cable de prueba de corriente, 10 m, negro, 10mm ² , con cocodrilo	1 ud.
Cable de prueba, 2 x 3 m	1 ud.
Cable de prueba, verde, 10 m	1 ud.
Cable de prueba, rojo, 50 m	1 ud.
Cable de prueba, negro, 1,5 m	1 ud.
Cocodrilo	4 uds.
Cable RS232	1 ud.
Cable USB	1 ud.
Funda de transporte	2 uds.
Correa para el cuello	1 ud.
Pilas de NiMH	6 uds.
Adaptador de corriente	1 ud.
CD con manual de instrucciones y programa de software HVLink	1 ud.
PRO	
Certificado de calibración	

4.2.2 Accesorios opcionales

Consulte en la hoja adjunta la lista de accesorios opcionales disponibles bajo pedido a su distribuidor.

5 Funcionamiento del Medidor MI 3295M

5.1 Organización de la pantalla

5.1.1 Indicador de batería

El indicador de batería muestra el estado de carga de las pilas y la conexión del cargador externo.

Î	Indicador de la capacidad de la batería.
0	Batería baja. La batería está demasiado gastada como para garantizar que el resultado sea correcto. Sustituya o recargue las pilas.
Ĺ	Recarga en curso (si está conectado el adaptador de corriente).

Advertencia:

- Si el instrumento permanece sin pilas durante más de 1 minuto:
- se perderán la hora y la fecha configuradas
- el instrumento regresará a los ajustes iniciales.

5.1.2 Advertencias y mensajes

En el campo de mensajes se muestran las advertencias y mensajes.

Ð	El Medidor y la Estación no están sincronizados.
	Medición en curso, preste atención a las advertencias mostradas.
8	Es posible almacenar los resultados.
\checkmark	El resultado de la medición está dentro de los límites predefinidos (PASA).
×	El resultado de la medición está fuera de los límites predefinidos (NO PASA).

Ajustes de la retroiluminación y el contraste

Utilizando la tecla de RETROILUMINACIÓN es posible ajustar la retroiluminación y el contraste.

LCD CONTRAST

Figura 5.2: Menú de ajuste del contraste

Tecla de RETROILUMINACIÓN:

Clic	Cambia el nivel de intensidad de la retroiluminación.
Mantener pulsada	Bloquea el nivel de retroiluminación de alta intensidad hasta que
durante 1 s	se apague el instrumento o se vuelva a pulsar la tecla.
Mantener pulsada	Se muestra la gráfica de barras para el ajuste del contraste de la
durante 2 s	pantalla LCD.

Teclas para el ajuste del contraste:

Cursor IZQUIERDO / DERECHO	Ajusta el contraste.
TEST	Confirma el nuevo contraste.
ESC	Sale sin efectuar cambios.

5.2 Selección de funciones

Para seleccionar los menús principales de las aplicaciones se debe utilizar el **SELECTOR DE FUNCIONES**:

	Selecciona la función de prueba / medición:
Selector de	<tensión de="" paso=""> prueba de tensión de paso</tensión>
funciones	<tensión contacto="" de=""> prueba de tensión de contacto</tensión>
	AJUSTES> ajustes / sincronización

5.3 Ajustes

En el menú AJUSTES es posible configurar diferentes opciones del instrumento.

Las opciones son:

- Selección del idioma
- Pantallas de ayuda
- Sincronización con la Estación
- Devolución del instrumento a sus valores iniciales
- Recuperación y borrado de los resultados almacenados
- Ajustes de la fecha y la hora

SETTINGS 00:00	
SELECT LANGUAGE	
HELP	
SYNCHRONIZE	
INITIAL SETTINGS	±
T WEMORA	
4	IЦ

Figura 5.3: Menú de ajustes

Teclas:

Cursor ARRIBA /	Selecciona la opción adecuada.
ABAJO	-
TEST	Entra en la opción seleccionada.

5.3.1 Idioma

Es posible seleccionar el idioma en el menú SELECCIONAR IDIOMA.

SELECT LANGUAGE ENGLISH SLOVENSKO DEUTSCH ESPANOL

Figura 5.4: Selección de idioma

Teclas:

Cursor ARRIBA / ABAJO	Selecciona el idioma.
TEST	Confirma el idioma seleccionado.
ESC	Regresa a menú principal Ajustes.

5.3.2 Pantallas de ayuda

conexiones, así como información acerca del instrumento. <i>Figura 5.5: Ejemplo de pantalla de</i> <i>ayuda</i>	Las pantallas de ayuda contienen esquemas básicos y diagramas de conexiones, así como información acerca del instrumento.	Figura 5.5: Ejemplo de pantalla de ayuda
--	--	--

Teclas:

Г

Cursor IZQUIERDO / DERECHO	Selecciona la pantalla de ayuda siguiente / anterior.
ESC	Regresa a menú principal Ajustes.

5.3.3 Ajustes iniciales

En este menú es posible devolver los ajustes y los parámetros de medición del instrumento a sus valores iniciales (de fábrica).	INITIAL SETTINGS Contrast, Language and Function Parameters will be set to default. VO YES Figura 5.6: Pantalla de ajustes iniciales
	с ,

Teclas:

Cursor IZQUIERDO / DERECHO	Selecciona Sí o No
TEST	Restaura los ajustes iniciales (si se ha seleccionado Sí)
ESC	Regresa a menú principal Ajustes sin efectuar cambios.

Los ajustes iniciales son:

Ajuste del instrumento	Valor predeterminado
Contraste	Valor predeterminado
Idioma	Inglés
Función	Parámetros / valor límite
Tensión de contacto	$I_{GEN} = 10 A$ $I_{DEFECTO} = 1 kA$ $R_{ENTRADA} = 1 M\Omega$
Tensión de paso	$U_{LIMITE} = 50 V$ $I_{GEN} = 10 A$ $I_{DEFECTO} = 1 kA$ $R_{ENTRADA} = 1 M\Omega$ $U_{LIMITE} = 50 V$

5.3.4 Fecha y hora

En este menú es posible ajustar la fecha y la hora.	SET DATE/TIME 12:00 PM Jan.01,2000 +
	Figura 5.7: Ajuste de la fecha y la hora

Teclas:

Cursor IZQUIERDO / DERECHO	Selecciona el elemento a modificar.
Cursor ARRIBA / ABAJO	Modifica el elemento seleccionado.
TEST	Confirma la nueva configuración y sale.
ESC	Regresa a menú principal Ajustes.

5.3.5 Sincronización

Seleccionando esta opción podrá cargar diferentes datos desde la Estación al Medidor y viceversa.

Las opciones son:

- Sincronización de fecha, hora y corriente
 Cargo de recultados de la corria
- Carga de resultados de la corriente de prueba para el cálculo de la tensión de paso / de contacto
- Carga de los resultados de la resistencia de tierra

SUNCHRONIZE 14:03

Figura 5.8: Menú de sincronización

Teclas:

Cursor ARRIBA / ABAJO	Selecciona la opción.	
TEST	Entra en la opción seleccionada.	
ESC	Regresa a menú principal Ajustes.	

Datos sincronizados:

TIEMPO,	Se cargarán al Medidor la hora y la fecha de la Estación.
CORRIENTE	Se cargará al Medidor el valor de corriente del generador I _{GEN}
	(si el generador de corriente está activado).
TENSIÓN DE	Se cargarán al Medidor los valores de las corrientes del
PASO / DE	generador registradas para el cálculo de la Tensión de paso o
CONTACTO	la Tensión de contacto.
RESULTADOS	Se cargarán al Medidor los resultados de resistencia de tierra o
DE TIERRA	de resistencia de tierra específica de la estación.

Nota:

El principal objetivo de la sincronización de tiempo/corriente consiste en permitir la corrección de los resultados de la tensión de paso y de contacto una vez finalizada la prueba. Durante la prueba, los resultados de la tensión de paso y de contacto se calculan basándose en la I_{GEN} configurada en el Medidor. Después de la prueba, es posible actualizar los resultados obtenidos con el Medidor utilizando las corrientes del generador I_{GEN} reales que fueron medidas al mismo tiempo con la Estación. Los valores de U_{DE} PASO y U_{CONTACTO} almacenados son corregidos según la siguiente fórmula:

$$U_{ESCALONADAnueva} = U_{ESCALONADAantigua} \cdot \frac{I_{GEN(realmente_generada)}}{I_{GEN(definida)}}$$
$$U_{CONTACTOnueva} = U_{CONTACTOantigua} \cdot \frac{I_{GEN(realmente_generada)}}{I_{GEN(definida)}}$$

- La sincronización está activa durante 24 h.
- Si se modifica la fecha / hora en el Medidor o en la Estación, la sincronización del tiempo y los datos se perderá. Es necesario borrar el registrador de corriente antes de continuar con las mediciones. Antes de borrarlo se puede descargar el contenido al Medidor.
- Si no hay sincronización entre las dos unidades, se muestra el icono 🖼 en la pantalla de medición del Medidor.

6 Funcionamiento de la Estación MI 3295S

6.1 Organización de las pantallas

6.2 Advertencias y mensajes

Antes y durante la medición, el instrumento realiza diferentes pruebas para garantizar se seguridad y evitar daños en el mismo. En estas pruebas de seguridad se incluyen la verificación de la existencia de cualquier tensión externa o la carga inadecuada de los terminales de prueba. Si se detecta un problema, se mostrará el correspondiente mensaje de advertencia. En este apartado se describen las advertencias y medidas de protección.

registrador actual

CURRENT GEN. 00:31 U:>10.0√ free: ₩	La tensión entre los terminales de prueba C1/H y C2/E es mayor de lo permitido (>10 V). Desconecte los cables de prueba y verifique el motivo por el que se ha detectado una tensión externa.
CURRENT GEN. 00:27 Current Generator was switched off. Possible reasons: -Overload -AbruPt change of current.	La salida ha sido sobrecargada o la corriente de prueba ha descendido bruscamente. La sobrecarga puede estar causada por una elevada corriente de tierra parásita. En este caso se recomienda reducir la potencia de salida. Para ampliar información, consulte el apartado <i>6.6.4 Escala de potencia de salida</i> .
	La corriente de salida es demasiado baja. Una corriente

CURRENT GEN. 00:28 Generated current too low (I < 1.0A). Check connections to earth.	excesivamente baja puede estar provocada por una mala conexión o una elevada resistencia de la pica.
CURRENT GEN. 00:22 TIME WAS CHANGED. LOGGED CURRENTS MUST BE CLEARED. STORED DATA SHOULD BE DOWNLOADED TO METER.	Se ha modificado la fecha / hora en la Estación, y por lo tanto se ha perdido la sincronización entre la Estación y el Medidor. Es necesario borrar el registrador de corriente. Antes de borrarlo, es posible descargar sus contenidos al Medidor.

En el campo de mensajes se muestran las advertencias y mensajes.

٧μ	La potencia de salida no está configurada al máximo.
	La medición está en curso, preste atención a las advertencias mostradas.
	Se ha detectado un elevado ruido eléctrico durante la medición. Es posible que los resultados se hayan visto afectados.
ſ	Alta resistencia de las picas de corriente (c) y/o tensión (p). Es posible que los resultados se hayan visto afectados.
8	Es posible almacenar los resultados.

6.3 Pantallas de ayuda

Igual que en MI3295M – consulte el apartado *5.4.2 Pantallas de ayuda* Es posible acceder a las pantallas de ayuda pulsando la tecla HELP.

6.4 Ajustes del contraste

Teclas para el ajuste del contraste:

Cursor IZQUIERDO /	Ajusta el contraste.
DERECHO	
TEST	Acepta el nuevo contraste.
ESC	Sale sin efectuar cambios.

6.5 Selección de funciones

Para seleccionar la función de prueba se deberá utilizar el SELECTOR DE FUNCIONES:

Selector de funciones	Selecciona la función de prueba / medición □ < RE TIERRA , ρ TIERRA > Resistencia de tierra □ < GEN. CORRIENTE > generación de la corriente de medición □ < AJUSTES > Ajustes	
Cursor ARRIBA /	Selecciona la subfunción en la función de medición	
ABAJO	seleccionada.	
Cursor IZQUIERDA /	Selecciona el parámetro de prueba que se va a modificar.	
DERECHA		
Teclas en el campo parámetro de prueba:		
Cursor ARRIBA	I Cambia el parámetro seleccionado.	

6.6 Ajustes

ABAJO

En el menú AJUSTES es posible configurar diferentes opciones del instrumento.

Las op	ociones son:	
	Selección del idioma	SETTINGS 09:06 SELECT LANGUAGE
	Devolución del instrumento a	INITIAL SETTINGS POWER RANGE
	los valores iniciales	ALARM . MEMORY
	Ajuste de la potencia de salida	
	del generador	Figura 6.5: Onciones en el menú Aiustes
	Ajuste de la alarma	rigula 6.6. Opciones en el mena Ajúsies
	Recuperación y borrado de los	
	resultados	
	Ajuste de la fecha y la hora	

Teclas:

Cursor ARRIBA / ABAJO	Selecciona la opción adecuada.
TEST	Entra en la opción seleccionada.
ESC	Regresa al menú principal de la función.

6.6.1 Idioma

Igual que en el MI3295M - consulte el apartado 5.4.1 Idioma

6.6.2 Ajustes iniciales

Al seleccionar esta opción el usuario podrá devolver los ajustes y los parámetros y límites de medición del instrumento a sus valores iniciales (de fábrica). INITIAL SETTINGS Contrast, Language and Function Parameters will be set to default.

Figura 6.6: Pantalla de ajustes iniciales

Tecla:

Cursor IZQUIERDO / DERECHO	Selecciona Sí o No
TEST	Restaura los ajustes predeterminados (si se ha seleccionado Sí)
ESC	Regresa al menú principal Ajustes sin efectuar cambios.

Los ajustes iniciales son:

Ajuste del instrumento	Valor predeterminado
Contraste	Valor predeterminado
Idioma	Inglés
Alarma	Desactivada
Escala de potencia	100%
Distancia 'a'	2,0m

6.6.3 Fecha y hora

Igual que en el MI3295M – consulte el apartado 5.4.4 Fecha y hora

6.6.4 Escala de potencia de salida

Es este menú es posible ajustar la potencia del generador de corriente.

POWER	RANGE
100%	
50%	

Figura 6.7: Menú de potencia de salida

Teclas:

Cursor ARRIBA / ABAJO	Selecciona la opción adecuada (50%, 75%, 100%)
TEST	Fija la potencia seleccionada.
ESC	Regresa al menú principal Ajustes.

Nota:

Cuando se pone en marcha el generador de corriente, la potencia de salida se fija automáticamente en el máximo disponible. Si las condiciones varían durante a medición, el generador puede desconectarse. Los posibles motivos de desconexión son:

- La salida puede ser sobrecargada por corrientes de tierra externas elevadas. En este caso se recomienda reducir la potencia de salida al 75% o el 50% y volver a poner en marcha el generador.
- La corriente ha dejado de circular bruscamente. Si parada ha sido provocada por la desconexión de los cables, no es necesario reducir la potencia. Se puede volver a poner en marcha el generador.

6.6.5 Alarma

Una alarma sonora avisa al usuario de que el generador de corriente se ha desconectado debido a una sobrecarga o a una variación brusca de la corriente. En este menú es posible activar y desactivar la alarma.

Figura 6.8: Selección de idioma

ENABLED

DISABLED

Teclas:

Cursor ARRIBA / ABAJO	Activa / desactiva la alarma.
TEST	Confirma la opción seleccionada.
ESC	Regresa al menú principal Ajustes.

Nota:

 Una alarma activada ayuda a evitar la mala interpretación de los resultados de la tensión de paso y de contacto. Las lecturas serán cercanas a 0 V ('pasa') si no circula corriente de prueba.

7 Mediciones

7.1 Teoría de las mediciones

7.1.1 Generalidades acerca de la conexión a tierra

Un electrodo o rejilla de conexión a tierra conectada al terreno tiene una determinada resistencia, que depende de su tamaño, superficie (óxido sobre la superficie metálica) y la resistividad del suelo que rodea al electrodo. La resistencia de la conexión a tierra no se concentra en un único punto, sino que se reparte a lo largo del electrodo. Una correcta conexión a tierra de las partes conductoras expuestas garantiza que la tensión presente en las mismas permanezca por debajo de un nivel peligroso en caso de fallo. Si se produce un fallo, una corriente de defecto circulará a través del electrodo de conexión a tierra. Alrededor del electrodo se produce una distribución de la tensión típica (el "embudo de tensión"). La mayor parte de la caída de tensión se concentra alrededor del electrodo de tierra. La Fig. 7.1 muestra el modo en que se producen tensiones de defecto, de paso y de contacto como resultado de las corrientes de defecto que circulan a través del electrodo o la rejilla de conexión a tierra en el terreno. Las corrientes de defecto cercanas a objetos distribuidores de potencia (subestaciones, torres de distribución, plantas) pueden ser muy elevadas, de hasta 200 kA, lo que puede provocar tensiones de pasos y de contacto peligrosas. Si existen conexiones metálicas subterráneas (intencionadas o desconocidas), el embudo de tensión puede adoptar formas atípicas, y se pueden producir altas tensiones lejos del punto del fallo. Por lo tanto, es necesario analizar atentamente la distribución de la tensión en caso de que se produzca un fallo alrededor de estos objetos.

Figura 7.1: Tensiones peligrosas en un sistema de conexión a tierra defectuoso

La norma IEC 61140 define las siguientes relaciones entre el tiempo máximo permitido y la tensión de contacto:

Tiempo exposició	máximo n	de	Tensión
>5 s a ∞			$U_C \leq 50 \ V_{AC} \ o \leq 120 \ V_{DC}$
< 0,4 s			$U_C \leq 115 \; V_{AC} \; o \leq 180 \; V_{DC}$
< 0,2 s			$U_C \leq 200 \ V_{AC}$
< 0,04 s			$U_C \le 250 \ V_{AC}$

Tabla 13: Duraciones máximas frente a tensión de defecto

Para una exposición más larga, las tensiones de contacto deben permanecer por debajo de 50 V.

7.1.2 Generalidades acerca de la resistencia de tierra específica

La resistencia de tierra específica (resistividad del suelo) se mide con el fin de determinar las características del suelo. La medición se lleva a cabo para garantizar un cálculo más preciso los sistemas de tierra, por ejemplo barras de distribución de alta tensión, grandes plantas industriales, sistemas de pararrayos, etc. Los resultados se emplean para calcular adecuadamente las dimensiones de los sistemas de tierra (tamaño, profundidad, número y posición de las picas de tierra). El valor de la resistencia de tierra específica se expresa en Ω m.

7.1.3 Medición

Durante la medición se introduce en la tierra una corriente de prueba a través de una pica auxiliar. La resistencia de la pica auxiliar debe ser lo más baja posible para introducir una corriente de prueba elevada. La resistencia se puede reducir mediante el uso de varias picas en paralelo o de un sistema de tierra auxiliar como la pica auxiliar. Una corriente elevada mejora la inmunidad frente a las corrientes de tierra parásitas.

Tensión de paso

La medición se realiza entre dos puntos en el terreno situados a una distancia de 1 m, tal como se muestra en la *Fig. 7.2*. Las picas de medición de 25 kg simulan los pies. La tensión entre las picas se mide por medio de voltímetro con una resistencia interna de 1 k Ω que simula la resistencia del cuerpo.

Figura 7.2: Medición de la tensión de paso

Tensión de contacto

La medición se realiza entre una parte metálica accesible conectada a tierra y el terreno, tal como se muestra en la *Fig. 7.3.* La tensión entre las picas se mide por medio de voltímetro con una resistencia interna de 1 k Ω que simula la resistencia del cuerpo.

Figura 7.3: Medición de la tensión de contacto

Debido a que la corriente de prueba normalmente sólo es una pequeña parte de la mayor corriente de defecto, las tensiones medidas se deben ajustar a escala según la siguiente ecuación:

$$U_{S,C} = U_{Medida} \frac{I_{Defecto}}{I_{Gen}}$$

 $U_{S,C}$tensión de paso o de defecto calculada en caso de corriente de defecto

 U_{Medida} tensión medida durante la prueba

I_{Defecto}.....corriente de tierra máxima en caso de fallo

I_{Gen}.....corriente de prueba introducida

Resistencia de tierra

Para la prueba de resistencia de la conexión a tierra se emplean una pica de tensión y una de corriente (que actúa como tierra auxiliar). Debido al embudo de tensión, es importante una correcta colocación de los electrodos de prueba. Puede encontrar más información acerca de la medición de la resistencia de tierra en el manual de METREL: *Guía para la comprobación y la verificación de instalaciones de baja tensión*.

Figura 7.4: Medición de la resistencia de tierra

Resistencia de tierra específica

Para medir la resistencia de tierra específica se introduce la corriente de prueba a través de dos picas de corriente (C1/H y C2/E). Las picas de tensión S y ES deben estar colocadas entre las picas de corriente (se debe tener en cuenta la equidistancia 'a' entre las picas).

Mediante el uso de diferentes distancias entre las picas de prueba se mide el material a diferentes profundidades. Al incrementar las distancias 'a' se mide una capa más profunda del material del terreno. Es posible encontrar más información acerca de la medición de la resistencia de tierra en el manual de METREL: *Guía para la comprobación y verificación de instalaciones de baja tensión*.

7.2 Tensión de paso y de contacto

7.2.1 Introducción de la corriente de prueba

Antes de iniciar las mediciones de tensión de paso o de contacto, es necesario introducir en el terreno la corriente de prueba con el MI 3295S.

Figura 7.65: Pantalla del generador de corriente

- Conecte el cable de prueba C2 al punto de conexión a tierra principal
- Coloque la pica de tierra
- Conecte el cable de prueba C1 a la pica de tierra o a otro punto de conexión a tierra auxiliar
- Seleccione la función GEN. CORRIENTE
- Pulse la tecla **TEST** para iniciar la generación de la corriente
- Compruebe el valor de la corriente

Conexiones para la medición de tensión de paso y de contacto

Para las conexiones de la Estación, consulte las figuras 7.2 y 7.3.

Figura 7.7: Ejemplo de la pantalla durante la generación de la corriente

Nota:

- La potencia de salida se ajusta automáticamente en el valor máximo disponible. En caso de que exista algún problema (que el generador se desconecte), consulte el apartado *6.6.4 Escala de la potencia de salida*.
- Si el cable de medición no está completamente desenrollado, el tamaño de la corriente de prueba generada puede verse afectado (impedancia de la bobina).
- Normalmente, la resistencia de la pica auxiliar limita la corriente introducida. Es posible incrementar la corriente introducida colocando varias picas en paralelo.

7.2.2 Sincronización antes de la prueba (recomendada)

Antes de iniciar las mediciones de tensión de paso y de contacto, se recomienda sincronizar el Medidor y la Estación. La sincronización ajusta la misma fecha y hora en las dos unidades. Por lo tanto, las tensiones medidas se pueden ajustar correctamente a escala una vez finalizadas las mediciones. Si la corriente se genera durante la sincronización, su valor también es enviado al Medidor. Para ampliar información, consulte el apartado *5.4.5 Sincronización*.

- Conecte el Medidor a la Estación por medio del cable RS232.
- En el Medidor, seleccione la opción TIEMPO, CORRIENTE en el menú SINCRONIZAR y confirme la selección.
- Siga la información indicada en la pantalla LCD del Medidor. Si la sincronización se realiza con éxito, se emitirá un sonido de confirmación tras los mensajes breves conectando... y sincronizando...

Conexiones para la sincronización

Fig. 7.8. Conexión de los instrumentos durante la sincronización

Nota:

 Las mediciones se pueden llevar a cabo sin que los instrumentos estén sincronizados. En este caso, la corriente de medición se debe configurar y modificar manualmente. Si la corriente introducida varía durante la prueba, es necesario ajustar manualmente el parámetro I_{GEN}. Los resultados de la medición pueden ser corregidos una vez finalizada la medición.

7.2.3 Mediciones de tensión de paso / tensión de contacto

Mientras la Estación introduce la corriente de medición en la tierra, es posible efectuar las pruebas de tensión de paso y de contacto con el Medidor.

Figura 7.9: Pantallas de tensión de paso y de contacto

Parámetros de prueba para la medición de tensión de paso / de contacto

l def	Máxima corriente de defecto esperada (10 A 200 kA)
l gen	Corriente de prueba ajustada manualmente (1 A50 A,) o cargada desde la Estación
R ent	Resistencia de entrada (1 MΩ, 1 kΩ)
U lim	Tensión de paso límite (25 V, 50 V)

Mediciones de tensión de paso o de contacto,

- Seleccione la función TENS. DE PASO o TENS. CONTACTO.
- Configure los parámetros y límites de la prueba (opcional).
- Para la tensión de paso, coloque los electrodos de prueba (para ampliar información consulte el apartado 7.1.2 Medición).
- Para la tensión de contacto, coloque un electrodo de prueba y conecte la parte metálica accesible (para ampliar información consulte el apartado 7.1.2 *Medición*).
- Conecte los cables de prueba al instrumento.
- Della Pulse la tecla **TEST** para realizar la medición.
- Almacene el resultado pulsando la tecla **MEM** (opcional).

Nota:

 Las mediciones se pueden llevar a cabo sin que los instrumentos estén sincronizados. En este caso, la corriente de medición se debe configurar y modificar manualmente. Los resultados no pueden ser corregidos una vez finalizada la medición.

Conexiones para la medición de tensión paso y de contacto

Consulte las conexiones en las figuras 7.2 y 7.3.

Figura 7.10: Ejemplos de resultados de las mediciones de tensión paso y de contacto

Resultados mostrados para la medición de tensión paso y de contacto:

U.....Tensión de paso o de contacto calculada

Um......Tensión de paso o de contacto medida

Nota:

- Para los terrenos secos o los suelos de hormigón, es necesario colocar un paño húmedo o una capa de agua entre la pica y el suelo.
- Es posible trabajar con varios Medidores al mismo tiempo.

7.2.4 Sincronización una vez finalizada la prueba (recomendada)

Si el Medidor y la Estación fueron sincronizados durante las mediciones, deberán ser vueltos a sincronizar una vez finalizadas las pruebas. En este paso se descargan al Medidor los valores de las corrientes generadas (medidas con la Estación). La corrección de los resultados medidos en el Medidor se realiza basándose en los datos de la corriente generada real. Para ampliar información consulte el apartado *5.4.5 Sincronización*.

- Conecte el Medidor a la Estación por medio del cable RS232.
- En el Medidor, seleccione TENS. DE PASO CONTACTO en el menú SINCRONIZACIÓN y confirme la selección.
- Siga la información que aparece en la pantalla LCD del Medidor. Si la sincronización se ha realizado con éxito, se emitirá una señal sonora a continuación de los mensajes conectando... y sincronizando...

Conexiones para la sincronización

Para la conexión de los instrumentos consulte la Figura 7.8.

Figura 7.11: Ejemplos de pantallas de sincronización

NO SINCRONIZADO: número de resultados no sincronizados.

Nota:

La descarga de los resultados almacenados puede tardar hasta 10 segundos.
 EL progreso se muestra en una gráfica de barras (

7.3 Resistencia de tierra

7.3.1 Medición de resistencia de tierra

Figura 7.12: Pantalla de resistencia de tierra

Mediciones de resistencia de tierra,

- Seleccione la función **RE TIERRA** utilizando el selector de funciones.
- Conecte el cable de prueba C2/E y el cable de potencial ES al punto de conexión
- a tierra principal.
- Conecte el cable de prueba C1/H a la pica de corriente.
- Conecte el cable de potencial S a la pica de potencial.
- Pulse la tecla TEST para realizar la medición.
- Almacene el resultado utilizando la tecla MEM (opcional).

Conexiones para la medición de resistencia de tierra

Consulte las conexiones en la Figura 7.4.

EARTH RE	12:41
.0.3	205.
R: WI W	Pip: 00
	NP* OIL
•	

Figura 7.13: Ejemplo de resultado de la medición de resistencia de tierra

Resultados mostrados para la medición de resistencia de tierra:

R.....Resistencia de tierra,

Rp.....Resistencia de la pica S (potencial),

Rc.....Resistencia de la pica H (corriente).

Nota:

- Una resistencia elevada de las picas S y H puede afectar a los resultados de la medición. En este caso se muestran las advertencias de 'Pica'.
- Unas corrientes y tensiones de ruido elevadas en la tierra pueden afectar a los resultados de las mediciones. En este caso el comprobador muestra la advertencia 'Ruido'.
- Las picas se deben colocar a una distancia suficiente del objeto medido.
- Para ver en un ordenador los resultados de la resistencia de tierra o de la resistencia de tierra específica almacenados, éstos se deben descargar antes al Medidor. To download the results select Earth results in Synchronize menu. After the results are downloaded the stored data in the Station will be automatically deleted. For connection of the instruments see *Figure 7.8*.

7.3.2 Medición de la resistencia de tierra específica

EARTH @	2.0m
P:	Ωm
Rc:Ω	Ω

Figura 7.6: Pantalla de resistencia de tierra específica

Mediciones de resistencia de tierra específica,

- Seleccione la función **TIERRA** utilizando el selector de funciones.
- Seleccione la subfunción RE TIERRA utilizando las teclas ARRIBA / ABAJO del cursor.
- Seleccione el parámetro de prueba utilizando las teclas IZQUIERDA / DERECHA del cursor.
- □ Seleccione la distancia 'a' utilizando las teclas ARRIBA / ABAJO del cursor.
- □ Conecte los cables de prueba C1/H y C2/E como picas de corriente.
- Conecte los cables de prueba S y ES como picas de potencial.
- Pulse la tecla TEST para efectuar la medición.
- □ Almacene el resultado pulsando la tecla MEM (opcional).

Conexiones para la medición de la resistencia de tierra específica

Para las conexiones, consulte la Figura 7.5.

Figura 7.7: Ejemplo de resultado de la medición de la resistencia de tierra específica

Resultados mostrados para la medición de la resistencia de tierra:

ρ.....Resistencia de tierra específica,

Rp.....Resistencia de la suma (S + ES) de las picas de potencial,

Rc.....Resistencia de la suma (C1/H + C2/E) de las picas de corriente.

Notas:

- Una alta resistencia de las picas de corriente y de potencial puede afectar a los resultados de la medición. En ese caso se muestran las advertencias 'Pica'.
- Unas altas corrientes y tensiones de ruido y tensiones en tierra pueden afectar a los resultados de la medición. En ese caso el medidor muestra la advertencia "Ruido".
- Para ver en un ordenador los resultados de la resistencia de tierra o de la resistencia de tierra específica almacenados, éstos se deben descargar antes al Medidor. Para descargar los resultados, seleccione Resultados de tierra en el menú Sincronizar. Una vez descargados los resultados, los datos almacenados en la Estación serán automáticamente eliminados. Consulte la conexión de los instrumentos en la *Figura 7.8*.

8 Manejo de los datos

8.1 Memoria

Los resultados medidos, junto con todos los parámetros relevantes, se pueden almacenar en la memoria del Medidor y de la Estación.

- Las mediciones de tensión de paso y de contacto se pueden almacenar en el medidor.
- Las mediciones de resistencia de tierra específica se pueden almacenar en la Estación y a continuación ser descargadas al Medidor.
- Los valores de las corrientes generadas se almacenan automáticamente en el registrador de la Estación.

8.1.1 Estructura de datos

La memoria del instrumento se divide en 3 niveles, cada uno de los cuales contiene 199 posiciones. El número de mediciones que se pueden almacenar en una única posición sólo está limitado por la memoria disponible.

El campo de estructura de datos describe la identidad de la medición

(objeto y posición).

El campo de medición contiene información acerca del tipo y el número de mediciones

que pertenecen al elemento de la estructura seleccionado (objeto y posiciones).

Esta organización ayuda a manejar los datos de un modo sencillo y eficaz.

Las principales ventajas de este sistema son:

- Los resultados de las pruebas se pueden organizar y agrupar de un modo estructurado.
- Navegación sencilla por las estructuras y los resultados.
- Después de descargar los resultados a un ordenador, es posible crear informes de prueba sin modificaciones o casi sin ellas.

RECALL	RESULTS
OBJEC	T 001
LOC1	001
/ LUUZ	001
No.:	1

RECALL RESULTS
> OBJECT 001
No.: 7 [13]

RECALL RESULTS
OD FOT OOI
OBJECT 001
No.: 7/7
STEP VOLT

Figura 8.1: Estructuras de datos y campos de medición

Campo de estructura de datos

RECALL RESULTS	Menú de manejo de la memoria
OBJECT 001 LOC1 001 LOC2 001	Campo de estructura de datos
OBJECT 001	 1^{er} nivel: OBJETO: Nombre predeterminado de la posición (objeto y su número sucesivo).

LOC1 001	 2º nivel: POS1: Nombre predeterminado de la posición y su número sucesivo.
LOC2 001	 3^{er} nivel: POS2: Nombre predeterminado de la posición y su número sucesivo. 001: Nº del elemento seleccionado.

Campo de medición

No.: 1	Nº de mediciones en la posición seleccionada.
No.: 7 [13]	Nº de mediciones en la posición seleccionada. [Nº de mediciones en la posición seleccionada y sus subposiciones]
>No.: 7/7 STEP VOLT	Nº del resultado de prueba seleccionado / Nº total de resultados de prueba almacenados en la posición seleccionada. Tipo de medición almacenada en la posición seleccionada.

8.1.2 Almacenamiento de los resultados de las pruebas

Tras la finalización de una prueba, los resultados y parámetros están listos para ser almacenados (en el campo de información aparece el icono.). El usuario puede almacenar los resultados pulsando la tecla **MEM**.

Save result	s		
OBJECT 00	1		
LOCI 001			
> LUC2 197			
	FREE:99.1%		
MEM : SAVE			

Figura 8.2: Menú de guardado de pruebas

Información en la pantalla

|--|

Teclas en el menú de guardado de pruebas - campo de estructura de datos:

Cursor ARRIBA / ABAJO	Selecciona el elemento de la posición (Objeto / Pos1 / Pos2).			
Cursor IZQUIERDO / DERECHO	Selecciona el número del elemento de la posición seleccionado (de 1 a 199).			
МЕМ	Guarda los resultados de las pruebas en la posición seleccionada y regresa al menú de medición.			
ESC	Regresa el menú de medición sin guardar la prueba.			

Notas:

- Por defecto, el instrumento ofrece almacenar el resultado en la última posición seleccionada.
- Si la medición se va a almacenar en la misma posición que la anterior, simplemente pulse la tecla MEM dos veces.

8.1.3 Recuperación de los resultados de las pruebas

En el menú MEMORIA, seleccione RECUPERAR RESULTADOS.

RECALL RESULTS > OBJECT 001 No.: 7 [13]	RECALL RESULTS OBJECT 001 > No.: 7/7 STEP VOLT
Figura 8.3: Menú de recuperación - campo de estructura de datos seleccionado	Figura 8.4: Menú de recuperación - campo de mediciones seleccionado

Teclas en el menú de recuperación de memoria (campo de estructura de datos seleccionado):

Cursor ARRIBA / ABAJO	Selecciona el elemento de la posición (Objeto / Pos1 / Pos2).
Cursor IZQUIERDO / DERECHO	Selecciona el número del elemento de la posición seleccionado (de 1 a 199).
ESC	Regresa al menú principal de la función.

Teclas en el menú de recuperación de memoria (campo de mediciones seleccionado):

Cursor IZQUIERDO / DERECHO	Selecciona la medición almacenada.
TEST	Muestra los resultados de la medición.
ESC	Regresa al campo de estructura de datos.

STEP VOLT	13:38
u: 5.1 v	\checkmark
Um:51.2mV	>3/3
Igen:10.0A ↓Iflt: 1.0kA	Č

Figura 8.5: Ejemplo de resultado de medición recuperado

Teclas en el menú de recuperación de memoria (se muestran los resultados de medición)

Cursor IZQUIERDO / DERECHO	Muestra los resultados de posición seleccionada.	medición	almacenados	en	la
	/ Migualización de tados los n	orámotro o de			

Cursor	ARRIBA	1	Visualización de todos los parametros de prueba.
ABAJO			
ESC			Regresa al campo de mediciones.

8.1.4 Borrado de los datos almacenados

Borrado de todo el contenido de la memoria

Seleccione BORRAR TODA LA MEMORIA en el menú MEMORIA. Se mostrará un mensaje de advertencia.

Figura 8.6: Borrar toda la memoria

Teclas en el menú de borrado de toda la memoria

TEST	Confirma el borrado de todo el contenido de la memoria.			
ESC	Regresa al menú Ajustes sin efectuar cambios.			

Figura 8.7: Borrado de la memoria en curso

Borrado de las mediciones en la posición seleccionada

Seleccione ELIMINAR RESULTADOS en el menú MEMORIA.

DELETE RESULTS	
OBJECT 001	
> LOC1 001	
No.: 3 [7]	

DELETE RESULTS	
0BJECT 001 LOC1 001 > LOC2 001	
No.: 1	

DELETE RESULTS
OBJECT 001
LOC1 001
No : 3
CLEAR RESULTS?

Figura 8.8: Menú de borrado de mediciones (campo de estructura de datos seleccionado)

Teclas en el menú de eliminación de resultados (campo de estructura de datos seleccionado):

Cursor ARRIBA /	Selecciona el elemento de la posición (Objeto / Pos1 /				
ABAJO	Pos2).				
Cursor IZQUIERDO /	Selecciona el número del elemento de la posición				
DERECHO	seleccionado (de 1 a 199).				
ESC	Regresa al menú principal de Ajustes.				
	Abre el cuadro de diálogo para la confirmación del				
	borrado de los resultados en la posición seleccionada.				

Teclas en cuadro de diálogo para la confirmación del borrado de los resultados en la posición seleccionada:

TEST	Elimina todos los resultados en la posición seleccionada.								
ESC	Regresa efectuar	al ˈca	menú mbios.	de	eliminación	de	los	resultados	sin

Borrado de mediciones individuales

Seleccione ELIMINAR RESULTADOS en el menú MEMORIA.

DELETE RESULTS
OBJECT 001
> No.: 4/7 CONTACT VOLT

Figura 8.9: Menú para el borrado de mediciones individuales (campo de mediciones seleccionado)

Teclas en el menú de eliminación de resultados (campo de estructura de datos seleccionado):

Cursor ARRIBA /	Selecciona el elemento de la posición (Objeto / Pos1 /			
ABAJO	Pos2).			
Cursor IZQUIERDO /	Selecciona el número del elemento de la posición			
DERECHO	seleccionado (de 1 a 199).			
TEST	Entra en el campo de mediciones.			
ESC	Regresa al menú principal de Ajustes.			

Teclas en el menú de eliminación de resultados (campo de mediciones seleccionado):

Cursor IZQUIERDO / DERECHO	Selecciona la medición.	
MEM	Abre el cuadro de diálogo para la confirmación del borrad de la medición seleccionada.	
ESC	Regresa al campo de estructura de datos.	

Teclas en el cuadro de diálogo para la confirmación del borrado de los resultados seleccionados:

TEST	Elimina el resultado de la medición seleccionado.			
ESC	Regresa al campo de mediciones sin realizar cambios.			

DELETE RESULTS	
OBJECT 001 LOC1 001 	
> No.: 2/2	
CLEAR RESULT?	

DELETE RESULT	S
OBJECT 001	
LOC1 001	
> No.: 1/1 STEP UNLT	

Figura 8.10: Cuadro de diálogo de confirmación

Figura 8.11: Pantalla una vez borrada la medición

8.2 Registrador de corriente

Si el Medidor y la Estación están sincronizados, los valores de las corrientes generadas se almacenan (junto con la hora y la fecha) en una parte independiente de la memoria de

la Estación. Para ampliar información acerca de las ventajas de las mediciones sincronizadas, consulte los apartados *5.4.5 Sincronización* y *7.2.4 Sincronización una vez*

finalizada la prueba.

El espacio disponible en el registrados se muestra en el lado derecho de la pantalla de Generador de corriente (consulte la *Fig. 6.2*). Cuando el registrador esté lleno será necesario borrar su contenido.

8.2.1 Borrado del contenido del registrador

Seleccione BORRAR EL REGISTRO DE CORRIENTE en el menú MEMORIA. Se mostrará un mensaje de advertencia.

Figura 8.12: Borrado del registrador de corriente

Teclas en el menú Borrar registrador

TEST	Confirma el borrado de todo el contenido de la memoria.
ESC	Regresa al menú principal de la función sin realizar cambios.

CLEARING	3
77%	

Figura 8.13: Borrado del registrado en curso

8.3 Comunicación

Es posible transferir los resultados desde el Medidor al ordenador. Un programa de comunicación especial instalado en el ordenador identifica el instrumento y permite la transferencia de datos entre el instrumento y el ordenador.

El Medidor cuenta con dos interfaces de comunicación: USB y RS 232.

El instrumento selecciona automáticamente el modo de comunicación en función de la interfaz seleccionada, teniendo prioridad la interfaz USB.

Cómo transferir los datos almacenados:

- Comunicación mediante RS 232: conecte un puerto COM del ordenador al conector PS/2 del instrumento por medio del cable de comunicación serial PS/2 - RS232;
- Comunicación mediante USB: conecte un puerto USB del ordenador al conector USB del instrumento por medio del cable de interfaz USB.
- Encienda el ordenador y el instrumento.
- Ejecute el programa de software *HVlink PRO*.
- El ordenador y el instrumento se reconocerán inmediatamente.
- El instrumento estará preparado para descargar los datos al ordenador.

El programa *HVlink PRO* es un software informático para Windows XP, Windows Vista y Windows 7. Lea el archivo README_HVLink.txt incluido en el CD para ver las instrucciones acerca de la instalación y ejecución del programa.

Nota:

• En necesario instalar los controladores USB en el ordenador antes de utilizar la interfaz USB. Consulte las instrucciones de instalación del USB disponibles en el CD de instalación.

9 Mantenimiento

Los instrumentos no podrán ser abiertos por personal no autorizado. El instrumento no tiene ninguna pieza que pueda ser sustituida por el usuario, a excepción de la batería situada bajo la cubierta posterior del Medidor (MI 3295M). Consulte el apartado 2.2 Pilas y carga del instrumento MI 3295M.

9.1 Sustitución del fusible

Existe un fusible situado en la cubierta delantera de la Estación MI 3295S.

• T 5 A / 250 V, (5 mm \times 20 mm) Este fusible evita los riesgos en caso de que se produzca un fallo en el interior del instrumento.

Advertencias:

- A Desconecte todos los accesorios de medición, apague el instrumento y desconecte el cable de alimentación antes de abrir la cubierta del soporte del fusible, ya que existe tensión peligrosa en el interior.
- Sustituya el fusible fundido únicamente por otro del mismo tipo, de lo contrario el instrumento puede resultar dañado y la seguridad del operario puede verse afectada.

La posición del fusible se puede observar en la Figura 4.1 del apartado 4.1 Panel frontal.

9.2 Limpieza

La carcasa no requiere ningún mantenimiento especial. Para limpiar la superficie de los dos instrumentos, tanto del Medidor (MI 3295M) como de la Estación (MI 3295S), utilice un paño suave ligeramente humedecido con agua jabonosa o alcohol. A continuación deje que el instrumento se seque por completo antes de utilizarlo.

Advertencias:

- No utilice líquidos derivados del petróleo o hidrocarburos
- No derrame el líquido por encima del instrumento

9.3 Calibración periódica

Es fundamental calibrar regularmente el instrumento de prueba, con el fin de garantizar las especificaciones técnicas indicadas en este manual. Recomendamos efectuar una calibración anual, que sólo podrá ser realizada por personal técnico autorizado. Póngase en contacto con su distribuidor para obtener más información.

9.4 Servicio

Para las reparaciones dentro o fuera del periodo de garantía, póngase en contacto con su distribuidor.

10 Especificaciones técnicas

10.1 Tensión de paso, tensión de contacto

Escala de medición U _m	Resolución	Precisión
0.01 ÷ 19.99 mV	0.01 mV	
20.0 ÷ 199.9 mV	0.1 mV	
200 ÷ 1999 mV	1 mV	±(2 % de lectura + 2 díg.)
2.00 ÷ 19.99 V	0.01 V	
20.0 ÷ 59.9 V	0.1 V	

Escala de medición calculada U	Resolución	Precisión
0.0 ÷ 199.9 V	0.1 V	valor calculado*
200 ÷ 999 V	1 V	

*La tensión de paso / de contacto mostrada se obtiene en base al cálculo:

 $\begin{array}{l} U_{S} = U_{medida} \ I_{defecto} / I_{gen;} \ U_{C} = U_{medida} \ I_{fallo} / I_{gen;} \\ I_{defecto} \ (seleccionable)...... \ 10 \ A \ ... \ 200 \ kA \\ Resistencia \ de \ entrada \ (seleccionable): \ 1 \ k\Omega, \ 1 \ M\Omega \\ Cancelación \ de \ ruido: \ Filtrado \ DSP \ 55 \ Hz, \ 64 \ dB \ rechazo \ de \ ruido \ de \ 50 \ (60) \ Hz \end{array}$

Terminales de prueba:

Conector de prueba	Medidor
--------------------	---------

10.2 Corriente

Escala de medición	Resolución	Precisión
0.00 ÷ 9.99 A	0.01 A	\pm (3 % de lectura + 5 díg.)
10.0 ÷ 99.9 A	0.1 A	±(3 % de lectura + 3 díg.)

Generador de corriente: 55 A máx. Tensión de prueba: < 55 V Frecuencia de prueba: 55 Hz Terminales de prueba:

C1/H - C2/E	Estación

10.3 Resistencia a tierra

Escala de medición (Ω)	Resolución (Ω)	Precisión
0.001 ÷ 1.999	0.001	
2.00 ÷ 19.99	0.01	\pm (2% de lectura + 5 dígitos)
20.0 ÷ 99.9	0.1	
100.0 ÷ 199.9	0.1	±(5% de lectura)

Terminales de prueba:

S, ES, C1/H, C2/E	Estación

10.4 Resistencia de tierra específica

Escala de medición (Ω m)	Resolución (Ωm)	Precisión
0,00 ÷ 9,99	0,01	
10,0 ÷ 99,9	0,1	Valor calculado, se debe tener en
100 ÷ 999	1	cuenta la precisión de la función
1,00k ÷ 9,99k	0,01k	Resistencia a tierra.
10,0k ÷ 99,9k	0,1k	

Principio del método de Wenner con distancias iguales entre las picas de prueba: $\rho = 2 \cdot \pi \cdot distancia \cdot R..$

10.5 Datos generales

Estación

Tensión de suministro nominal	230 V AC (±10 %) / 50 o 60 Hz
Consumo máximo de potencia	750 VA
Categoría de sobretensión	CAT II / 300 V
Categoría de medición	CAT IV / 50 V
Clasificación de la protección	Clase I

Protección general del instrumento:

Fusible	.T 5 A / 250 V (5 mm x 20 mm)
Grado de contaminación Grado de protección	. 3 . IP 30
Pantalla retroiluminación	. Pantalla de matriz de 128 x 64 puntos con
Memoria Registrador de corriente	. 1000 posiciones de memoria . 24 horas min.
Interfaz de comunicación Dimensiones (an×al×p) Peso	. RS232 (sólo para la comunicación con el Medidor) . 56.3 cm × 27.5 cm × 25.7 cm . 29.5 kg (sin accesorios)
Medidor	
Tensión de suministro Funcionamiento	. 9 V_{DC} (6 pilas o acumuladores de 1.5 V, tamaño AA) . normalmente 12h
cargador Corriente de entrada de la toma del	.12 V (±10 %)
cargador	400 mA máx.
Corriente de carga de las pilas	. 250 mA (regulada internamente)
Categoría de medición	. CAT IV / 50 V
Clasificación de la protección	aislamiento doble
Grado de contaminación	.2
Grado de protección	. IP 40
Pantalla	. pantalla de matriz de 128 x 64 puntos con retroiluminación
Memoria	. 1500 posiciones de memoria
	.1.0202, 000
Dimensiones (an×al×p) Peso	. 23 cm × 10.3 cm × 11.5 cm . 1.3 kg (con pilas)
Condiciones ambientales	
Temperatura de referencia	. 10 °C ÷ 30 °C
Humedad de referencia	. 35 % ÷ 65 % HR
Condiciones de funcionamiento	
Temperatura de funcionamiento	. 0 °C ÷ +40 °C
Humedad relativa máxima	. 85 % HR (0 °C \div 40 °C), sin condensación
Condiciones de almacenamiento	
Temperatura	10 °C ÷ +60 °C
Humedad relativa máxima	. 90 % HR (-10 °C ÷ +40 °C)
80 % HR (40 °C ÷ 60 °C)	
Las precisiones son válidas durante 1 año e	n las condiciones de referencia. El coeficiente de

temperatura fuera de estos límites es del 0,2 % del valor medido por cada °C, más 1 dígito.